A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome).

نویسندگان

  • V Steimle
  • B Durand
  • E Barras
  • M Zufferey
  • M R Hadam
  • B Mach
  • W Reith
چکیده

Regulation of MHC class II gene expression is an essential aspect of the control of the immune response. Primary MHC class II deficiency is a genetically heterogeneous disease of gene regulation that offers the unique opportunity of a genetic approach for the identification of the functionally relevant regulatory genes and factors. Most patients exhibit a characteristic defect in the binding of a nuclear complex, RFX, to the X box motif of MHC class II promoters. Genetic complementation of a B-lymphocyte cell line from such a patient with a cDNA expression library has allowed us to isolate RFX5, the regulatory gene responsible for the MHC class II deficiency. This gene encodes a novel DNA-binding protein that is indeed a subunit of the RFX complex. Mutations in the RFX5 gene have been characterized in two patients. Transfection of the patient's cells with the RFX5 cDNA repairs the binding defect and fully restores expression of all the endogenous MHC class II genes in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency.

Major Histocompatibility Complex class II (MHC-II) deficiency is a disease of gene regulation that provides a unique opportunity for the genetic dissection of the molecular mechanisms controlling transcription of MHC-II genes. Cell lines from MHC-II deficiency patients have been assigned to three complementation groups (A, B and C) believed to reflect the existence of distinct essential MHC-II ...

متن کامل

Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells.

MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific regulatory factors. Fibroblasts derived from two recently identified bare lymphocyte syndrome patients, EBA and FZA, were found to contain novel mutations in the RFX-B gene. RFX-B encodes a component of the RFX transcription factor that functions in the assembly of multipl...

متن کامل

CIITA and Its Dual Roles in MHC Gene Transcription

Class II transactivator (CIITA) is a transcriptional coactivator that regulates γ-interferon-activated transcription of Major Histocompatibility Complex (MHC) class I and II genes. As such, it plays a critical role in immune responses: CIITA deficiency results in aberrant MHC gene expression and consequently in autoimmune diseases such as Type II bare lymphocyte syndrome. Although CIITA does no...

متن کامل

Mutations in the bare lymphocyte syndrome define critical steps in the assembly of the regulatory factor X complex.

The regulatory factor X (RFX) complex, which contains RFXANK(B), RFXAP, and RFX5, binds to X and S boxes in major histocompatibility complex class II (MHC II) promoters. In the bare lymphocyte syndrome (BLS), which is a human severe combined immunodeficiency, MHC II promoters are neither occupied nor transcribed. Thus, the absence of any one subunit prevents the formation of the RFX complex. Ne...

متن کامل

A Case of Probable MHC Class II Deficiency with Disseminated BCGitis

Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 1995